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NGO 

•  A space-borne laser 
interferometer GW 
astrophysical observatory 

•  Studied by ESA as a 
candidate for the selection 
of a Large mission in 2012 
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An astrophysical observatory 
•  Survey compact stellar-mass binaries and study the structure of the Galaxy 

–  Elucidate the formation and evolution of Galactic stellar-mass compact binaries and thus constrain the 
outcome of the common envelope phase and the progenitors of (type Ia) supernovae. 

–  Determine the spatial distribution of stellar mass binaries in the Milky Way 
–  Improve our understanding of white dwarfs, their masses, and their interactions in binaries, and enable 

combined gravitational and electromagnetic observations 
•  Trace the formation, growth and merger history of massive black holes. 

–  Trace the formation, growth and merger history of massive black holes with masses 105 M⊙ – 107 

M⊙ during the epoch of growth of quasi-stellar objects and widespread star formation (0 < z < 5) 
through their coalescence in galactic halos. 

–  Capture the signal of coalescing massive black hole binaries with masses 2×104 M⊙ – 105 M⊙ in the 
range of 5 < z < 10 when the universe is less than 1 Gyr old. 

•  Explore stellar populations and dynamics in galactic nuclei 
–  Characterize the immediate environment of massive black holes in z < 0.7 galactic nuclei from extreme 

mass ratio capture signals. 
–  Discovery of intermediate-mass black holes from their captures by massive black holes. 

•  Confront General Relativity with observations 
–  Detect gravitational waves directly and measure their properties precisely 
–  Test whether the central massive objects in galactic nuclei are consistent with the Kerr black holes of 

General Relativity. 
–  Perform precision tests of dynamical strong-field gravity. 

•  Probe new physics and cosmology with gravitational waves 
–  Measure the spectrum of cosmological backgrounds, or set upper limits on them in the 10−4 Hz – 10−1 Hz 

band. 
–  Search for gravitational wave bursts from cosmic string cusps and kinks. 
–  Cosmography with standard sirens 
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The approach 
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•  the starting point are LISA with her 6-year long 
formulation study, and LISA Pathfinder. 



LTP 
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5 ×106 km 

LISA basic concepts 

Free falling particles 
( 0.3 fg/√Hz-1/2 @ 0.1 mHz) 

Interferometric doppler link 
 ( 18 pm /√Hz-1/2  @ 3 mHz) 

Spacecraft 
(no mechanical contact) 
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LISA basic concept. 1 Orbits 

•  Formation rotates within waves (pointing capability) 
•  Constant solar panels illumination 
•  All laser links within common spacecraft (SC)-

formation plane 
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LISA basic concept 2. The Doppler link 
•  A Doppler test-mass (TM) to TM relative speedometer Δν/ν≃Δv/c 

•  Real Link is split in three: two TM-SC two-way links, two one-way SC-SC links  
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LISA basic concept. 3 Drag-free 

•  Position of spacecraft relative to test-mass is measured 
by  local  interferometer 

•  Along each link direction, spacecraft is kept centered on 
test-mass by acting on micro-Newton thrusters. 
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LISA Instrument main elements 

•  Telescope 
•  Optical Bench 
•  GRS 
•  2 per SC 
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Gravity Reference Sensor (GRS) 

•  Provides electrostatic sensing along all degrees of 
freedom (dof) for initial acquisition and for normal 
operation of non interferometric dof. 

•  Provides TM actuation for non-drag-free dof. 
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GRS 



•  Local TM-SC metrology 
•  SC-SC link send 
•  SC-SC link receive 

Optical bench 
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LISA Pathfinder Heritage 
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The Concept of LISA Pathfinder 

•  Drop the 5 Million kilometer spacecraft↔spacecraft measurement 
•  Maintain both spacecraft↔test-mass local measurements 
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LISA Design Items Verified on Pathfinder (in black) 

–  Free flying test mass subject to very low parasitic forces: 
•  Drag free control of spacecraft (non-contacting spacecraft) 
•  Low noise microthruster to implement drag-free 
•  Large gaps, heavy masses with caging mechanism 
•  High stability electrical actuation on cross degrees of freedom 
•  Non contacting discharging of test-masses 
•  Thermomechanical stability of S/C 
•  Gravitational field cancellation 

–  Precision interferometric, local ranging of test-mass and 
spacecraft: 

•  pm resolution ranging, sub-mrad alignments 
•  High stability monolithic optical assemblies 

–  Precision spacecraft to spacecraft ranging: 
•  High stability telescopes 
•  High accuracy phase-meter 
•  High accuracy frequency stabilization 
•  Constellation acquisition 
•  Precision attitude control of S/C  
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LPF expected performance 

•  Interferometry tested end-
to end in thermal vacuum 
chamber with entire SC on, 
and solar radiation 
simulator 

•  Performance of 
interferometers better then 
requirements: better than 5 
pm/√Hz  and 0.3 nrad/√Hz 
at at 10 mHz  
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Torsion pendulum test of GRS performance 
•  GRS flight hardware replica tested. Ok for LISA/NGO  for: 

–  Thermal effects 
–  Charge patches noise 
–  Actuation noise 
–  Molecular impacts  

•  Upper limit to unforeseen disturbances noise 
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Expected LPF performance close to LISA/
NGO requirements 
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NGO 

•  Key features: 
•  Suppression of one arm 
•  Squeezing of size to 1 

Mio Km 
•  Shortening of duration 
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LISA 

NGO 
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Technical simplifications 

•  Reduction of the Arm Length from 5 to 1 Mio. km 
– Enables significant simplification of the Payload 

•  Telescope Diameter reduced from 40 cm to 20 cm 
•  Laser Power reduced from 2 W to 1.4 W 
•  Point-Ahead Angle Mechanism not required 

•  Realization of only 2 interferometer arms 
– Saves hardware for the 3rd arm 

•  Duration of Science Operations reduced from 5+5 to 
4+2 years 
– Enables a stable “Slow Drift Away” orbit with minimal Δv 
– Reduces consumable like propellant for micro-thruster 

allowing for cold gas 
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Cost reduction measures 

•  Dual Soyuz launch scenario 
–  Selected on the basis of current ESA cost 

estimates 
–  Instead of single Ariane 

•  Propulsion modules inherited from 
LPF 
–  Maximum heritage 
–  Minimal design changes avoid re-

qualification 
•  Removal of Ancillary Metrology Functions 

not required anymore to meet performance 
requirements 
–  no PAAM Metrology 
–  no Optical Truss 

•  Minimal payload height 
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Mother/Daughter configuration 
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•  Hardware for the 3rd arm is 
saved in Daughters. This 
reduces the Daughter’s 
– Dry mass 
– Propellant mass 
– Wet launch mass 
– Payload AIVT effort 



Orbit 
•  Many considered, Halo, Lagrange points, Earth 

centered…. 
•  Baseline: slow drift away orbit starting at 10°, reaching 

22° after 6 years 
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Arm-length and angles 
•  Arm-lengths (1-2 and 2-3)  stable at 2-3 % 

•  Angles (2) less then 0.9° 

Maritime Institute 20/12/2011 S. Vitale 27 



SC-SC velocity and distance to earth 

•  Max velocity < 10 Km/s (<10 MHz Doppler shift 

•  Distance to Earth 30→65 Mio Km in 6 Years 
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Launch configuration 
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Launch configuration 
•  Daughter and Mother launch look 

identical 
•  Mother has useful spare capacity in 

excess  of 1000kg (shared launch) 
•  Ariane launch also possible, cost less 

solid 
•  Budgets. Worst case: RIT power and cold 

gas mass 
•  Wet mass 

–  Mother 1650 kg 
–  Daughter 1583 Kg (each) 

•  Dry mass (20% margin) 
–  Mother 1003 kg 
–  Daughter 849 kg 

•  Payload mass 
–  Mother 282 kg 
–  Daughter 155 kg 

•  Power (20% margin) 
–  Mother 863 W 
–  Daughter 755 W 

Maritime Institute 20/12/2011 S. Vitale 30 



Spacecraft 
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Metrology 

•  Link configuration similar to LISA 
•  GRS identical to LPF 
•  Metrology simplified by decreased telescope diameter, 

removal of point ahead mechanism, optical truss 
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Daughter  Spacecraft 
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Mother  Spacecraft 

Maritime Institute 20/12/2011 S. Vitale 34 



Instrument 

•  The basic complement 
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LISA OB Development (ESA) 
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Laser development in ESA 
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Under development under ESA contract 
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Science 
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Compact binaries 
•  > 8 Verification binaries (pending 

upcoming surveys) 
•  >3000 other individually 

detectable  sources (progenitors of 
supernovae, test of enhanced 
formation in globular clusters), 
<3° location, 10° inclination, 
distances down to 1 % 

•  Detailed study of high SNR ones 
give tidal and mass-transfer 
behavior. 

•  >107 undistinguishable binaries 
galactic foreground gives 
population census and properties 

signal in time domain before (black) and after 
(red) subtracting resolvable sources)                           

→→→→ 
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           Arp 299                          NGC6240                             Abell 400                           NGC 3393 

Super-massive black-hole mergers 

•  High SNR to z ≈ 20 
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Cosmic stratigraphy 

•  During their cosmic evolution black 
holes transit into the mass interval to 
which NGO  is sensitive. 

•  NGO  will map galaxies formation 
and clustering , using black holes as 
clean tracers. 
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Di Matteo et al. 2008 Simulation of baryonic matter evolution  



BH physics at high SNR 
•  NGO  will be able to detect the gravitational waves emitted by black hole binaries with total mass 

(in the source rest frame) as small as 104M⊙  and up to 107M⊙ , out to a redshift as remote as z ∼ 
20 . 

•  NGO will  measure red-shifted mass to an unprecedented accuracy, up to the 0.1 % – 1 % level, 
whereas absolute errors in the spin determination are expected to be in the range 0.01  to 0.1 
dimensionless units. 

•  Luminosity distance to 1-50 %. Sky location for brightest ≈3° -10° 
•  Final merger in  GR  leads to a single ringing Kerr black hole characterized by its mass and spin. 

Detecting two quasi-normal modes checks whether the final object indeed is described only by two 
parameters in accord with the “no-hair” theorem of GR . 
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Extreme Mass Ratio inspiral 
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•  Stellar mass black-hole into a 
Massive black-hole 

•  SNR 20 up to z ≈ 0.7 
•  Rate in 2 years (2<   <50) 



Extreme Mass Ratio inspiral 

•  NGO observes ∼ 105  final 
cycles of the inspiral of a 
stellar mass object into a 
black hole with mass 
105M⊙  – 106M⊙  up to z ∼ 
0.7.  

•  Give precisely the 
parameters of the central 
object including mass, spin 
(0.1-0.01 % accuracy) and 
quadrupole moment (0.001 
M☉3!2/ c4).  

•  Allows to check whether it 
is consistent with a GR  
Kerr black hole. 
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Science objectives 
•  Survey compact stellar-mass binaries and study the structure of the Galaxy 

–  Elucidate the formation and evolution of Galactic stellar-mass compact binaries and thus constrain the 
outcome of the common envelope phase and the progenitors of (type Ia) supernovae. 

–  Determine the spatial distribution of stellar mass binaries in the Milky Way 
–  Improve our understanding of white dwarfs, their masses, and their interactions in binaries, and enable 

combined gravitational and electromagnetic observations 
•  Trace the formation, growth and merger history of massive black holes. 

–  Trace the formation, growth and merger history of massive black holes with masses 105 M⊙ – 107 

M⊙ during the epoch of growth of quasi-stellar objects and widespread star formation (0 < z < 5) 
through their coalescence in galactic halos. 

–  Capture the signal of coalescing massive black hole binaries with masses 2×104 M⊙ – 105 M⊙ in the 
range of 5 < z < 10 when the universe is less than 1 Gyr old. 

•  Explore stellar populations and dynamics in galactic nuclei 
–  Characterize the immediate environment of massive black holes in z < 0.7 galactic nuclei from extreme 

mass ratio capture signals. 
–  Discovery of intermediate-mass black holes from their captures by massive black holes. 

•  Confront General Relativity with observations 
–  Detect gravitational waves directly and measure their properties precisely 
–  Test whether the central massive objects in galactic nuclei are consistent with the Kerr black holes of 

General Relativity. 
–  Perform precision tests of dynamical strong-field gravity. 

•  Probe new physics and cosmology with gravitational waves 
–  Measure the spectrum of cosmological backgrounds, or set upper limits on them in the 10−4 Hz – 10−1 Hz 

band. 
–  Search for gravitational wave bursts from cosmic string cusps and kinks. 
–  Cosmography with standard sirens 
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